關(guān)注公眾號

在SAT數(shù)學考試中巧求余數(shù)

2024年【出國留學】申請條件/費用/專業(yè)咨詢 >>

留學院校申請條件是什么?留學費用是多少?學校留學專業(yè)都有哪些?

點擊咨詢

   sat1數(shù)學考試中,考察余數(shù)這個知識點的題目不多,可是一旦出現(xiàn)了,很多數(shù)學基礎(chǔ)好的同學可能會在這些看似很難實則非常簡單的余數(shù)題目上栽跟頭。下面為大家介紹一下在SAT數(shù)學考試中,如何巧求余數(shù)。

 
  請看例題:
 
  When the positive integer h is divided by 10, the remainder is 6. When the positive integer k is divided by 10, the remainder is 8. What is the remainder when h + k is divided by 10?
 
  傳統(tǒng)解法:設(shè)h除以10的商是p, 那么可得h=10p+6; 設(shè)k除以10的商是q,可得k=10q+8.
 
  因此h+k=10p+6+10q+8=10(p+q)+14=10(p+q)+10+4
 
  顯然,10(p+q)和10都是10的倍數(shù),除以10后不會產(chǎn)生余數(shù)。所以h+k除以10的余數(shù)就等于4.
 
  運用上面這個方法確實能夠求出答案,但是涉及到了多項式的運算,太浪費時間。其實在SAT數(shù)學中,凡是涉及到變量的題目,都可以考慮用賦值法。
 
  巧解法:h除以10得到余數(shù)是6,我們就令商為1,那么h = 16
 
  同理,k除以10得到余數(shù)是8,令商為1,那么 k =18.
 
  所以h + k = 34.
 
  那么34除以10得到的余數(shù)為4.
 
  因此h+k除以10的余數(shù)就等于4.
 
  怎么樣,是不是比傳統(tǒng)的方法要簡單快捷得多呢?那么例題中所有條件不變,將問題改為:What is the remainder when h k is divided by 10,又該如何解呢?如果還是用傳統(tǒng)的方法去解,那就要涉及到多項式的乘法了。相比之下,賦值法依然是最佳解題方法。

  我們精心為大家整理的《在SAT數(shù)學考試中巧求余數(shù)》文章不知道大家滿不滿意,如果大家想了解更多SAT考試相關(guān)的信息,請關(guān)注SAT考試欄目。
本文來源: http://yangzhi902.com/kaoshi/SATkaoshi/2014/0117/140.html

【聲明】本文部分內(nèi)容及圖片摘自互聯(lián)網(wǎng),登載此文只為提供信息參考。如有異議,請聯(lián)系本站刪除。
免費獲取《留學申請攻略》 一鍵領(lǐng)取

我要報名

  • 免費獲取留學資料,開啟屬于您的個性化留學之旅!

相關(guān)閱讀

免費獲取留學方案

   手機號:
意向國家:
咨詢學歷:

最新熱文

精彩專題